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Forces on moving charges in magnetic fields
AP-C Objectives (from College Board Learning Objectives for AP Physics)

Calculate the magnitude and direction of the force in terms of q, v, and B, and
explain why the magnetic force can perform no work.
Deduce the direction of a magnetic field from information about the forces
experienced by charged particles moving through that field.
Describe the paths of charged particles moving in uniform magnetic fields.
Derive and apply the formula for the radius of the circular path of a charge that
moves perpendicular to a uniform magnetic field.
Describe under what conditions particles will move with constant velocity through
crossed electric and magnetic fields.

Forces on current-carrying wires in magnetic fields
Calculate the magnitude and direction of the force on a straight segment of current-
carrying wire in a uniform magnetic field.
Indicate the direction of magnetic forces on a current-carrying loop of wire in a
magnetic field, and determine how the loop will tend to rotate as a consequence of
these forces.
Calculate the magnitude and direction of the torque experienced by a rectangular
loop of wire carrying a current in a magnetic field.

Fields of long current-carrying wires
Calculate the magnitude and direction of the field at a point in the vicinity of such a
wire.
Use superposition to determine the magnetic field produced by two long wires.
Calculate the force of attraction or repulsion between two long current-carrying
wires.

Biot-Savart law and Ampere’s law
Students should understand the Biot-Savart Law, so they can:

Deduce the magnitude and direction of the contribution to the magnetic field
made by a short straight segment of current-carrying wire.
Derive and apply the expression for the magnitude of B on the axis of a circular
loop of current.

Students should understand the statement and application of Ampere’s Law in
integral form, so they can:

State the law precisely.
Use Ampere’s law, plus symmetry arguments and the right-hand rule, to relate
magnetic field strength to current for planar or cylindrical symmetries.

Students should be able to apply the superposition principle so they can determine
the magnetic field produced by combinations of the configurations listed above.



Forces on Moving Charges in Magnetic Fields
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Calculate the magnitude and direction of the force in terms of q, v, and B, and
explain why the magnetic force can perform no work.
Deduce the direction of a magnetic field from information about the forces
experienced by charged particles moving through that field.
Describe the paths of charged particles moving in uniform magnetic fields.
Derive and apply the formula for the radius of the circular path of a charge that
moves perpendicular to a uniform magnetic field.
Describe under what conditions particles will move with constant velocity through
crossed electric and magnetic fields.

Objectives

FM = qv

× B


Magnetic force cannot perform work on a moving charge
Magnetic force can change its direction (moving it in a circle if FM is constant.)

Forces on Moving Charges in Magnetic Fields
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Force is always perpendicular to velocity, therefore the magnetic force 

on a moving charge is never applied in the direction of the 

displacement, therefore a magnetic force can do no work on a moving 

charge (but it can change its direction).

Magnetic Forces Cannot Perform Work on Moving 
Charges
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Standard (SI) units of magnetic field are Tesla

1 Tesla (1 T) = 1 N•s/(C•m)

1 Tesla is a very strong magnetic field

More common non-SI unit is the Gauss

1 Gauss = 10-4 Tesla

Earth’s magnetic field strength ≈ 0.5 Gauss

Units of Magnetic Field

E field can do work on a moving charge
B field can never do work on a moving charge

Total Force on a Moving Charged Particle (E field and B Field) Lorentz Force

F

TOT = q E


+ v

× B
( )

A charged particle in crossed E and B fields can undergo constant velocity motion if 

v, B, and E are all selected perpendicular to each other.  Then, if v=E/B, the particle 

can travel through the selector without any deflection, while particles with any other 

velocity are diverted.

The Velocity Selector



Forces on current-carrying wires in magnetic fields
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Calculate the magnitude and direction of the force on a straight segment of current-carrying wire in a uniform magnetic field.
Objectives

Indicate the direction of magnetic forces on a current-carrying loop of wire in a magnetic field, and determine how the loop will 
tend to rotate as a consequence of these forces.
Calculate the magnitude and direction of the torque experienced by a rectangular loop of wire carrying a current in a magnetic 
field.

Moving charges in magnetic fields experience forces.
Current in a wire is just the flow of positive charges.  If charges are moving perpendicular to magnetic fields, 
they experience a force which is applied to the wire.

Forces on Current-Carrying Wires
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B
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= q(v ×

B)→ dFB

 
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
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
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Example: A straight wire of length 1 m carries a 
current of 100A through a magnetic field of 1 Tesla. 
Find the force on the wire.

I=100A

X B=1 Tesla

dFB
 

= I(d

l ×

B)→∫∫ FB = IlBsinθ →

FB = IlB
I=100A

l=1m   B=1T⎯ →⎯⎯⎯ FB = (100A)(1m)(1T )→
FB = 100N

a B

b

I

F
F

B

Determine the direction of the 
force on the wire using the 3rd 
right hand rule.

Direction of Force

F = IaB        Fnet = 0

τ net = r × F = b
2 IaB + b

2 IaB = IabB
Creates counter-clockwise rotation

a B

b

I

F

FB

180º later

Net torque is reversed
To keep motor moving, you need 
to either reverse the current 
direction with a commutator or 
turn off the current in this stage.

Electric Motors



Fields of long current-carrying wires
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B =
µ0I
2πr

µ0 = 4π ×10−7 T•m A
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Calculate the magnitude and direction of the field at a point in the vicinity of a long current-carrying wire.
Objectives

Use superposition to determine the magnetic field produced by two long wires.
Calculate the force of attraction or repulsion between two long current-carrying wires.

Moving charges create magnetic fields.
Current is moving positive charges, therefore current-carrying wires create magnetic fields.
Use 1st Right Hand Rule to find direction of magnetic field.
If you have two wires, determine magnetic field from each and add them up using superposition principle.
These fields may interact with other moving charges, so current-carrying wires can create forces of attraction 
or repulsion between themselves.

Magnetic Fields produced by long straight current-carrying wires

“Hold” wire with your right hand, with 
thumb in the direction of positive current 
flow.  Your fingers “wrap around” the wire 
in the direction of the magnetic field.

1st Right Hand Rule

I

I

I

I

Wires Attract Each Other Wires Repel Each Other

Use right hand rules to determine force between parallel current-carrying wires.
Find magnetic field due to first wire.  Draw it.
Find direction of force on 2nd wire due to current in second wire.  Force on 1st wire will be equal and opposite (Newton’s 3rd)

Force Between Parallel Current-Carrying Wires

You can never draw a closed surface with any net magnetic flux because there are no magnetic monopoles.
This is the basis of Gauss’s Law for Magnetism (Maxwell’s 2nd Equation)

Gauss’s Law for Magnetism

ΦBnet
=

B• d

A∫ = 0



Biot-Savart Law
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Understand Biot-Savart Law
Objectives

Deduce the magnitude and direction of the contribution to the magnetic field made by a short straight segment of current-carrying wire.
Derive and apply the expression for the magnitude of B on the axis of a circular loop of current.

“Brute Force” method of finding the magnetic field due to a length of current-carrying wire

Biot-Savart Law

d

B =

µ0I(d

l × r̂)

4πr 2
r̂=
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r⎯ →⎯ d


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
l × r )

4πr3

I
dBr

I
dB

r

r̂

Example: Derive the B field due to a long straight current-carrying wire

R B

dl

B

I

P

dl

Rr̂
r

Example: Derive the magnetic field due to a current loop

r̂
R I

B
dl


B = d


B∫ =

µ0I
4πr 2

d

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∫ d
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l ×r̂=dl sinθ

sinθ=sin90°=1⎯ →⎯⎯⎯⎯
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l
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
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d
!
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d
!
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2
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2
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Biot-Savart Law (Alternate)
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Understand Biot-Savart Law
Objectives

Deduce the magnitude and direction of the contribution to the magnetic field made by a short straight segment of current-carrying wire.
Derive and apply the expression for the magnitude of B on the axis of a circular loop of current.

1. Look for symmetries and simplifications.
2. Define your five quantities (note that prime mark indicates source of magnetic field)

3. Set up your integral.
4. Integrate (may require computer assistance for all but the simplest cases)

Problem Solving Steps
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=
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"
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!
B =
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Example: Derive the B field due to a long straight current-carrying wire.  Note cylindrical symmetry, common sense tells us 
only positional dependence will be radial.

x

y

z

I

dI

Pr

r ' =
r
r '

!
r =< x,0,0>
!
r '=<0,0, z '>
d
!
I =<0,0, Idz '>
!
"=
!
r−
!
r '=< x,0,−z '>

"=
!
" = x2+ z '2

Once five items are defined, you can integrate:

Example: Derive the magnetic field at the center of a current loop of radius R.

I

B

dl

= r
r '

dI
r '

!r =<0,0,0>
!r '=< R ',0,0>
d
!
I =<0, Idl ',0>
!
"=
!r− !r '=<−R ',0,0>

"=
!
" = R
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d
!
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!
"
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!
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!
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d
!
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!
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∫ =
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I
R2
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Note: Symmetries indicate all the magnetic field will be in
the positive z direction (toward the top of the page)

Example: Derive the magnetic field at some distance from an infinite sheet of charge.

Strategy: Break up sheet into infinitessimally small squares of area dA, each with a current per perpendicular length of σv, 
which we can define as the aerial current density K.

x

y

z P

!r =<0,0, z>= zk̂
!r '=< x ', y ',0>= x ' î+ y ' ĵ
d
!
I =< Kdx 'dy ',0,0>= Kdx 'dy ' î
!
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!
r−
!
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!
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d
!
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!
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d
!
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!
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d
!
I×
!
"= (Kdx 'dy ' î )×(−y ' ĵ)+ (Kdx 'dy ' î )×(zk̂)→

d
!
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d
!
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Note: z-component (in k 
direction) must be 0 since 
magnetic fields must make 
complete loops (divergence of 
magnetic field is zero)
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Ampere’s law
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Understand Ampere’s Law

State the law precisely.
Use Ampere’s law, plus symmetry arguments and the right-hand rule, to relate magnetic field strength to current for planar or cylindrical symmetries.

Apply the superposition principle to determine the magnetic field produced by combinations of Biot-Savart and Ampere’s laws configurations listed 
above.

Elegant method of finding magnetic field in situations of symmetry.

Ampere’s Law


B• d

lclosed

loop
∫ = µ0I penetrating

I
B

r

dl

Example: Find magnetic field strength due to a current-carrying wire


B• d

lclosed

loop
∫ = µ0I penetrating →

B(2πr) = µ0I→ B =
µ0I
2πr

Example: Find the magnetic field everywhere for a 
current-carrying wire (inside and outside the wire)

I

R


B• d

lclosed

loop
∫ = µ0I penetrating →

B(2πr) = µ0I→ B =
µ0I
2πr

dl

R
IB

Outside the Wire:


B• d

lclosed

loop
∫ = µ0I penetrating →

B(2πr) = µ0
πr 2

πR2
⎛
⎝⎜

⎞
⎠⎟
I→ B =

µ0Ir
2πR2

dl

R

IB
r

Inside the Wire:

Example: Calculate the magnetic field in the middle of a solenoid (i.e. Slinky) using Ampere’s Law.

I

B

B

Side View

Cross-Section

First choose a rectangular 
closed loop for application 
of Ampere’s Law.

Path 1 and 3: integral of 
B•dl is 0 since the angle 
between B and dl is 90°.

Path 2 integral is 0 with 
assumption B is close to 0 
outside solenoid

Integrate through Path 4


B• d

lclosed

loop
∫ = µ0I penetrating

I pen=
l
L NI⎯ →⎯⎯⎯

Bl = l
L Nµ0I→ B = N

L µ0I

I

1
2

3

4

L

l

Assume B outside solenoid is 0.
N loops of wire.


